Page 1 of 31

sparkfun

TART SOMETHING

ESP32 Thing Motion Shield Hookup Guide

Introduction

The ESP32 Thing Motion Shield is a versatile addition to our ESP32 Thing.
Small movements can be detected with the tried and true LSM9DS1 IMU,
large movements and time can be detected with the addition of a GPS
sensor. There’s a port for the GP-20U7 module, and breakout pins for any
serial device. Data can be easily logged by adding an microSD card to the
slot. And did | mention there’s a general purpose LED? It works quite well
to display GPS lock state!

SparkFun ESP32 Thing Motion Shield
@® DEV-14430

Product Showcase: ESP32 Thing Motion Shield

Required Materials

To fully follow this hookup guide, you would will need the following
materials. You may not need everything though, depending on what you
have and what you want to do. Add it to your cart, read through the guide,
and adjust the cart as necessary depending on what you would like.

Note: This list doesn't include the Motion Shield. It is all of the
accessories used to complete this guide.

ESP32 Thing Motion Shield Hookup Materials SparkFun Wish

List

Breadboard - Self-Adhesive (White)
PRT-12002

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

\ 0

If you need to knock up a quick prototype there's nothing like having a...

Lithium lon Battery - 1Ah
PRT-13813

/

These are very slim, extremely light weight batteries based on Lithium...

SparkFun ESP32 Thing
DEV-13907
The SparkFun ESP32 Thing is a comprehensive development platfor...

ESP32 Thing Stackable Header Set
PRT-14311

These headers are made to work with the SparkFun ESP32 Thing an...

(2) Break Away Headers - Straight
PRT-00116
A row of headers - break to fit. 40 pins that can be cut to any size. Us...

NN &

USB micro-B Cable - 6 Foot
i@ CAB-10215

USB 2.0 type A to micro USB 5-pin. This is a new, smaller connector f...

microSD Card with Adapter - 16GB (Class 10)
COM-13833

This is a class 10 16GB microSD memory card, perfect for housing o...

SEN-13676
The SparkFun BME280 Atmospheric Sensor Breakout is the easy wa...

GPS Receiver - GP-20U7 (56 Channel)
GPS-13740

<> E
@‘r SparkFun Atmospheric Sensor Breakout - BME280
@

The GP-20U7 is a compact GPS receiver with a built-in high performa...

Recommended Tools

You will need a soldering iron, solder, and general soldering accessories.

v,

This is your tried and true white solderless breadboard. It has 2 power...

Page 2 of 31

Hakko FX888D Soldering Solder Lead Free - 100-gram
Station Spool
@ TOL-11704 @ TOL-09325

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking
out these tutorials before continuing.

Assembly:

How to Solder: Through-
Hole Soldering

This tutorial covers everything you
need to know about through-hole
soldering.

Concepts:

GPS Basics
The Global Positioning System

(GPS) is an engineering marvel that
we all have access to for a relatively

low cost and no subscription fee.
With the correct hardware and
minimal effort, you can determine
your position and time almost
anywhere on the globe.

Accelerometer Basics
A quick introduction to

accelerometers, how they work, and

why they're used.

Working with Wire
How to strip, crimp and work with
wire.

Gyroscope

Gyroscopes measure the speed of
rotation around an axis and are an
essential part in determines ones
orientation in space.

Page 3 of 31

How does GPS work? For more on GPS, check out this excellent
article and video, Adventures in Science: How GPS Works.

Programming:

Installing Arduino IDE

A step-by-step guide to installing
and testing the Arduino software on
Windows, Mac, and Linux.

ESP32 Thing Hookup Guide
An introduction to the ESP32
Thing's hardware features, and a
primer on using the WiFi/Bluetooth
system-on-chip in Arduino.

Hardware Overview

The hardware is a conglomeration of an SD card socket, LSM9DS1 IMU,
and GPS serial port. There’s also an LED for general indication.

Micro SD Card Slot

Hexadecimal

How to interpret hex numbers, and
how to convert them to/from decimal
and binary.

U u Un-used IMU Pin Pads

LSMEDS1 90 IMU

\

D13 LED
{User Controlled)

JST for GPS UART
(GP-20UT)

I

! Genaric UART and
3.3v Power

90609

\‘-/anbols on Bottom)

All components are populated on the top of the board. Here, you can see
the SD card, IMU, and port. The ESP32 Thing is intended to sit above this
board, so no pins are labeled.

Page 4 of 31

There are no options on the bottom side. Here, you'll find labels for all of
the pins. The two rows of pins on the side are wired together so that you
have one available for prototyping after installing an ESP32 Thing.

The signals that are used are show here, grouped by function.

ESP32 Thing
Pin

GPIO 13

GPIO 16

GPIO 17

GPIO 18
GPIO 19
GPIO 23
GPIO 33
GPIO 38
GPIO 21

GPIO 22

Direction

110

Signal

LED

GPS_TX

GPS_RX

SD_SCK
SD_DO
SD_DI
SD_CS
SD_CD
SDA

SCL

Hardware Assembly

In this section, we’ll prepare the shield for a development environment by
adding headers. This section also shows what the GPS module, battery,
and SD card look like when properly inserted.

Group

LED

GPS
UART

GPS
UART

SD Card
SD Card
SD Card
SD Card
SD Card
IMU

IMU

The completed stack.

ESP32
Function

GPIO 13

Serial 1

Serial 1

SPI SCK

SPI MISO

SPI MOSI

GPIO 33

GPIO 38

12C SDA

12C SCL

Attach the Stackable Headers to the Motion

Page 5 of 31

Shield

Solder a single pin on each header. Make sure the headers are straight,
and lined up. You can use perf board, or an already populated ESP32
Thing to help with alignment.

Attach the Headers to the ESP32 Thing

Put the pin headers in the shield, and set the ESP32 Thing on top. Then,
apply solder and build up nice fillets making sure to not bridge any pins.

Adding an Optional Sensor

If you're using a BME280 to try out the 12C or SPI port, install headers on it
as well. See the BME280 Hookup Guide for more information.

For generic operation solder both headers (left). If you only need I?C
(middle), or SPI (right), only attach those headers.

3-Pin JST and microSD Card

Page 6 of 31

Make sure the JST and microSD cards are installed properly.

« If the JST connectors feel like they’re not going in, don’t force them,
try wiggling them instead. They will hang out a bit when properly
seated.

* The microSD card slot is dual position with click feature, and the PCB
has a recess. The card should easily click in and out.

g

The JST connectors are seated properly, protruding slightly from their
sockets (left). When the SD card is inserted properly (right), it should be
flush with the edge of the board.

Stack and Connect Additional Parts!
Stack the ESP32 Thing on the ESP32 Thing Motion Shield.

ESP32 Thing, motion shield, GPS receiver, and battery installed. The
ESP32 Thing is ready for code!

You can also install the stack in a breadboard, letting the antenna hang off
the end so you have the most room left to work with when prototyping. If
using the BME280, install that on the breadboard as well and wire the
sensor as explained in the “Using the 12C and SPI Buses” example.

Software

General Requirements

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our
installation guide.

The Motion Shield itself doesn’t use any special software. It relies on the
SD card library from the ESP32 core, and the LSM9DS1 library, plus
whatever you attach to it. Make sure you’ve got the following installed
before continuing on to the examples.

* ESP32 Thing Arduino Core — Follow the instructions from the
ESP32 Thing Hookup Guide.
* Arduino Libraries:
o LSM9DS1 - Follow the LSM9DS1 Hookup Guide or use the
library manager.

Page 7 of 31

Page 8 of 31

> BME280 — Follow the BME280 Hookup Guide or use the
library manager.
* Your choice of NMEA parser, or do it yourself! — Examples are
contained and need no libraries.

The example code used throughout this tutorial can also be found in the
ESP32 Thing Motion Shield’s GitHub repository.

ESP32 THING MOTION SHIELD EXAMPLE CODE https://github.com/sparkfun/ESP32_Motion_Shield/tree/master/Software

General Tips
Strapping Pins

The following pins are used to configure the CPU at power up to indicate
various booting methods (known as ‘strapping’ pins). These are exposed to
the user, but should be avoided for beginners. Attaching a device that
matches the default state during power up should not interfere with the boot
procedure. If it seems like the ESP32 isn’t booting properly, investigate
these pins.

Proper Usage: To get full functionality from these pins, attach a tri-
state buffer, then enable the buffer with software after the boot has
completed. This advanced method is not covered here.

ESP32 Pin ESP32 Thing Default Description

Name Pin Name Pull

MTDI GPIO12 High Internal LDO voltage
select

GPIO0 GPIO0 High SPI/Download boot

GPI02 GPIO2 Low SPI/Download boot

MTDO GPIO15 High UOTXD toggling
mode/timing

GPIO5 GPIO5 High UOTXD timing

GPIO4 GPIO4 Low Unknown

If UOTXD, GPIO2, GPIO5 are floating, GPIO0 determines boot mode.
See the ESP32 Datasheet for more information.
Input-only Pins

GPIO34 through GP1039 work only as inputs, with no internal pull
capabilities (as of 10/31/2017).

Standard pin naming

The pins listed in Hardware Overview are also listed here as #defines you
can use. Not all are necessary for every application, but it's nice to have
them all in one place for reference.

darroll_vasek
Typewritten Text
https://github.com/sparkfun/ESP32_Motion_Shield/tree/master/Software

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

AUX_LED_PIN 13
GPS_TX_PIN 16
GPS_RX_PIN 17
SD_SCK_PIN 18
SD_DO_PIN 19
SD_DI_PIN 23
SD_CS_PIN 33
SD_CD_PIN 38
IMU_SDA_PIN 21
IMU_SCL_PIN 22

Using the IMU

The IMU on the shield is the LSM9DS1, which is connected the the ESP32
Thing to the 12C port only. Any of the examples from the LSM9DS1 library
should be good to go, as long as you specify the port type to be 12C with

default addresses.

There are two examples in this section that will work without modification on

the Motion Board.

The first example is a modification of the LSM9DS1_ESP32_Settings.ino
example, with SPI related information removed. This is a good place to start
because it shows all of the API, and you can comment out what you don’t

need.

Page 9 of 31

/***

*ok kK

LSMIODS1_ESP32_Settings.ino

SFE_LSM9DS1 Library Settings Configuration Example
Original Creation: August 13, 2015 by Jim Lindblom
https://github.com/sparkfun/LSMODS1_Breakout

This Arduino sketch demonstrates how to configure every
possible configuration value in the SparkFunLSM9DS1 library.

It demonstrates how to set the output data rates and scales
for each sensor, along with other settings like LPF cutoff
frequencies and low-power settings.

It also demonstrates how to turn various sensors in the
LSM9DS1 on or off.

Hardware setup: This library is intended to be used with a
ESP32 Motion shield connected directly to the ESP32 Thing.

Development environment specifics:
IDE: Arduino 1.8.2
Hardware Platform: ESP32 Arduion Board

This code is beerware. If you see me (or any other SparkFun
employee) at the local, and you've found our code helpful,
please buy us a round!

Distributed as-is; no warranty is given.
3k 3k 3k 3k ok 3k 3k 5k 5k 3k 3k 3k >k %k >k >k %k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k 5k 5k 3k >k 5k 5k >k >k >k %k %k %k 3k >k 3k 3k 3k 3k 3k 3k 5k 5k 3k 3k >k >k %k %k >k k %

*Hk

// Include SparkFunLSM9DS1 library and its dependencies
#include <Wire.h>

#include <SPI.h>

#include <SparkFunLSM9DS1.h>

LSMODS1 imu; // Create an LSM9DS1 object

// Mag address must be Ox1E, would be 0x1C if SDO_M is LOW
#define LSM9DS1_M Ox1E

// Accel/gyro address must be ©x6B, would be Ox6A if SDO_AG i
S LOW

#define LSMODS1_AG ©Ox6B

// Global variables to keep track of update rates
unsigned long startTime;

unsigned int accelReadCounter = 0;

unsigned int gyroReadCounter = 0;

unsigned int magReadCounter = 0;

unsigned int tempReadCounter = 0;

// Global variables to print to serial monitor at a steady rat
e

unsigned long lastPrint = 0;

const unsigned int PRINT_RATE = 500;

void setupDevice()

{

// Use IMU_MODE_I2C
imu.settings.device.commInterface = IMU_MODE_I2C;
imu.settings.device.mAddress = LSM9DS1_M;
imu.settings.device.agAddress = LSM9DS1_AG;

}

Page 10 of 31

void setupGyro()

{

// [enabled] turns the gyro on or off.
imu.settings.gyro.enabled = true; // Enable the gyro

// [scale] sets the full-scale range of the gyroscope.
// scale can be set to either 245, 500, or 2000
imu.settings.gyro.scale = 245; // Set scale to +/-245dps
// [sampleRate] sets the output data rate (ODR) of the gyro
// sampleRate can be set between 1-6

// 1 =14.9 4 = 238

// 2 =59.5 5 = 476

// 3 =119 6 = 952

imu.settings.gyro.sampleRate = 3; // 59.5Hz ODR

// [bandwidth] can set the cutoff frequency of the gyro.
// Allowed values: ©-3. Actual value of cutoff frequency
// depends on the sample rate. (Datasheet section 7.12)
imu.settings.gyro.bandwidth = 0;

// [lowPowerEnable] turns low-power mode on or off.
imu.settings.gyro.lowPowerEnable = false; // LP mode off
// [HPFEnable] enables or disables the high-pass filter
imu.settings.gyro.HPFEnable = true; // HPF disabled

// [HPFCutoff] sets the HPF cutoff frequency (if enabled)
// Allowable values are ©-9. Value depends on ODR.

// (Datasheet section 7.14)

imu.settings.gyro.HPFCutoff = 1; // HPF cutoff = 4Hz

// [flipX], [flipY], and [flipZ] are booleans that can
// automatically switch the positive/negative orientation
// of the three gyro axes.

imu.settings.gyro.flipX = false; // Don't flip X
imu.settings.gyro.flipY = false; // Don't flip Y
imu.settings.gyro.flipZ = false; // Don't flip Z

}

void setupAccel()

{

// [enabled] turns the acclerometer on or off.
imu.settings.accel.enabled = true; // Enable accelerometer
// [enableX], [enableY], and [enableZ] can turn on or off
// select axes of the acclerometer.
imu.settings.accel.enableX = true; // Enable X
imu.settings.accel.enableY = true; // Enable Y
imu.settings.accel.enableZ = true; // Enable Z

// [scale] sets the full-scale range of the accelerometer.
// accel scale can be 2, 4, 8, or 16
imu.settings.accel.scale = 8; // Set accel scale to +/-8g.
// [sampleRate] sets the output data rate (ODR) of the

// accelerometer. ONLY APPLICABLE WHEN THE GYROSCOPE IS

// DISABLED! Otherwise accel sample rate = gyro sample rate.

// accel sample rate can be 1-6

// 1 =10 Hz 4 = 238 Hz

// 2 = 50 Hz 5 = 476 Hz

// 3 =119 Hz 6 = 952 Hz
imu.settings.accel.sampleRate = 1; // Set accel to 10Hz.
// [bandwidth] sets the anti-aliasing filter bandwidth.
// Accel cutoff fregeuncy can be any value between -1 - 3.
// -1 = bandwidth determined by sample rate

// @ = 408 Hz 2 = 105 Hz

// 1 = 211 Hz 3 =50 Hz

imu.settings.accel.bandwidth = @; // BW = 408Hz

// [highResEnable] enables or disables high resolution
// mode for the acclerometer.
imu.settings.accel.highResEnable = false; // Disable HR
// [highResBandwidth] sets the LP cutoff frequency of
// the accelerometer if it's in high-res mode.

// can be any value between 0-3

Page 11 of 31

// LP cutoff is set to a factor of sample rate
// © = ODR/50 2 ODR/9

// 1 = ODR/100 3 = ODR/400
imu.settings.accel.highResBandwidth = 0;

}

void setupMag()

{

// [enabled] turns the magnetometer on or off.
imu.settings.mag.enabled = true; // Enable magnetometer
// [scale] sets the full-scale range of the magnetometer
// mag scale can be 4, 8, 12, or 16
imu.settings.mag.scale = 12; // Set mag scale to +/-12 Gs
// [sampleRate] sets the output data rate (ODR) of the
// magnetometer.

// mag data rate can be 0-7:

// @ = 0.625 Hz 4 = 10 Hz

// 1 =1.25Hz 5 =20 Hz
// 2 = 2.5 Hz 6 = 40 Hz
// 3 =5Hz 7 = 80 Hz

imu.settings.mag.sampleRate = 5; // Set OD rate to 20Hz
// [tempCompensationEnable] enables or disables
// temperature compensation of the magnetometer.
imu.settings.mag.tempCompensationEnable = false;

// [XYPerformance] sets the x and y-axis performance of the

// magnetometer to either:
// © = Low power mode 2 = high performance
// 1 = medium performance 3 = ultra-high performance

imu.settings.mag.XYPerformance = 3; // Ultra-high perform.

// [ZPerformance] does the same thing, but only for the z
imu.settings.mag.ZPerformance = 3; // Ultra-high perform.
// [lowPowerEnable] enables or disables low power mode in
// the magnetometer.

imu.settings.mag.lowPowerEnable = false;

// [operatingMode] sets the operating mode of the

// magnetometer. operatingMode can be 0-2:

// @ = continuous conversion

// 1 = single-conversion

// 2 = power down

imu.settings.mag.operatingMode = @; // Continuous mode

}

void setupTemperature()

{

// [enabled] turns the temperature sensor on or off.
imu.settings.temp.enabled = true;

}

uint16_t initLSM9DS1()

{

setupDevice(); // Setup general device parameters
setupGyro(); // Set up gyroscope parameters
setupAccel(); // Set up accelerometer parameters
setupMag(); // Set up magnetometer parameters
setupTemperature(); // Set up temp sensor parameter

return imu.begin();

}

void setup()

{
Serial.begin(115200);

Serial.println("Initializing the LSM9DS1");
uint16_t status = initLSMIDS1();

Page 12 of 31

Serial.print("LSM9DS1 WHO_AM_I's returned: ox");
Serial.println(status, HEX);
Serial.println("Should be ©x683D");
Serial.println();

startTime = millis();

}

void loop()

{
//
/!
if
{

//
//
if

//
//
if

//
//
if

/1
if

//
//

imu.accelAvailable() returns 1 if new accelerometer

data is ready to be read. @ otherwise.
(imu.accelAvailable())

imu.readAccel();
accelReadCounter++;

imu.gyroAvailable() returns 1 if new gyroscope
data is ready to be read. @ otherwise.
(imu.gyroAvailable())

imu.readGyro();
gyroReadCounter++;

imu.magAvailable() returns 1 if new magnetometer
data is ready to be read. @ otherwise.
(imu.magAvailable())

imu.readMag();
magReadCounter++;

imu.tempAvailable() returns 1 if new temperature sensor

data is ready to be read. @ otherwise.
(imu.tempAvailable())

imu.readTemp();
tempReadCounter++;

Every PRINT_RATE milliseconds, print sensor data:

((lastPrint + PRINT_RATE) < millis())

printSensorReadings();
lastPrint = millis();

printSensorReadings prints the latest IMU readings

along with a calculated update rate.

void printSensorReadings()

{

float
float

float gyroRate = (float)gyroReadCounter / runTime;
float magRate = (float)magReadCounter / runTime;
float tempRate = (float)tempReadCounter / runTime;
Serial.print("A: ");
Serial.print(imu.calcAccel(imu.ax));
Serial.print(", ");
Serial.print(imu.calcAccel(imu.ay));
Serial.print(", ");
Serial.print(imu.calcAccel(imu.az));

runTime = (float)(millis() - startTime) / 1000.0;
accelRate = (float)accelReadCounter / runTime;

Page 13 of 31

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
.print(" dps \t| ");
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Serial

}

The second example is more heavily modified example. It outputs CSV
data to the serial port (which can be rerouted to a file if you're into that).
Here, a simple configuration is chosen but more work is done with the

print(" g \t| ");
print(accelRate);

println(" Hz");

print("G: ");
print(imu.calcGyro(imu.gx));

print(", ");
print(imu.calcGyro(imu.gy));
print(", ");

print(imu.calcGyro(imu.gz));

print(gyroRate);

println(" Hz");

print("M: ");
print(imu.calcMag(imu.mx));
print(", ");
print(imu.calcMag(imu.my));
print(", ");
print(imu.calcMag(imu.mz));
print(" Gs \t]| ");
print(magRate);

println(" Hz");

print("T: ");
print(imu.temperature);
print(" \t\t\t| ");
print(tempRate);

println(" Hz");

println();

output data.

Page 14 of 31

/***

*ok kK

LSM9DS1_CSV.ino
Collecting IMU data as CSV for graphing

Original Creation: August 13, 2015 by Jim Lindblom
from the LSM9DS1_Basic_I2C.ino library example.
https://github.com/sparkfun/LSMODS1_Breakout

Hardware setup: This library is intended to be used with a
ESP32 Motion shield connected directly to the ESP32 Thing.

Development environment specifics:
IDE: Arduino 1.8.2
Hardware Platform: ESP32 Arduion Board

This code is beerware. If you see me (or any other SparkFun
employee) at the local, and you've found our code helpful,
please buy us a round!

Distributed as-is; no warranty is given.
K 5K 5K ok ok 3k 3 o ok ok ok ok ok oK oK ok ok 5k 5k ok 3k 3k 3k ok o ok ok ok ok ok ok ok ok 3k sk ok ok ok ok ok ok oK oK ok oK ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok

***/

// The SFE_LSM9DS1 library requires both Wire and SPI be
// included BEFORE including the 9DS1 library.

#include <Wire.h>

#include <SPI.h>

#include <SparkFunLSM9DS1.h>

LSMODS1 imu; // Create an LSMIDS1 object

#define LSMODS1_M ©Ox1E // Would be ©x1C if SDO_M is LOW
#define LSM9DS1_AG ©0x6B // Would be Ox6A if SDO_AG is LOW

#define PRINT_SPEED 250 // 250 ms between prints
static unsigned long lastPrint = @; // Keep track of print tim
e

// Earth's magnetic field varies by location. Add or subtract
// a declination to get a more accurate heading. Calculate

// your's here:

// http://www.ngdc.noaa.gov/geomag-web/#declination

#define DECLINATION -8.58 // Declination (degrees) in Boulde
r, CO.

//Internal variables
float roll;

float pitch;

float heading;

char csvBuffer[300];

void setup()

{
Serial.begin(115200);

// Configure LSM9DS1 library parameters
imu.settings.device.commInterface = IMU_MODE_I2C;
imu.settings.device.mAddress = LSM9DS1_M;
imu.settings.device.agAddress = LSMI9DS1_AG;
imu.settings.mag.scale = 2;

// The above lines will only take effect AFTER calling

// imu.begin(), which verifies communication with the IMU
// and turns it on.

Page 15 of 31

delay(1000);
Serial.println("Starting Sketch");

delay(100);

if (!imu.begin())

{
Serial.println("Failed to communicate with LSM9DS1.");
Serial.println("Double-check connections.");
while (1)

K}

void loop()

{

// Update the sensor values whenever new data is available
if (imu.gyroAvailable())

{
// To read from the gyroscope, first call the
// readGyro() function. When it exits, it'll update the
// gx, gy, and gz variables with the most current data.
imu.readGyro();

}

if (imu.accelAvailable())

{
// To read from the accelerometer, first call the
// readAccel() function. When it exits, it'll update the
// ax, ay, and az variables with the most current data.
imu.readAccel();

¥

if (imu.magAvailable())

{
// To read from the magnetometer, first call the
// readMag() function. When it exits, it'll update the
// mx, my, and mz variables with the most current data.
imu.readMag();

}

if ((lastPrint + PRINT_SPEED) < millis())

{
// Print the collected data as CSV
calcAttitude(imu.ax, imu.ay, imu.az, -imu.my, -imu.mx, im

u.mz);
float datal = imu.calcGyro(imu.gx);
float data2 = imu.calcGyro(imu.gy);
float data3 = imu.calcGyro(imu.gz);
float data4 = imu.calcAccel(imu.ax);
float data5 = imu.calcAccel(imu.ay);
float dataé = imu.calcAccel(imu.az);
float data7 = imu.calcMag(imu.mx);
float data8 = imu.calcMag(imu.my);
float data9 = imu.calcMag(imu.mz);

sprintf(csvBuffer, "%4.3f,%4.3f,%4.3F,%4.3F,%4.3F,%4.3F,%
4.3F,%4.3F,%4.3F,%4.3F,%4 . 3F,%4.3F,", datal, data2, data3, dat
a4, data5, data6, data7, data8, data9, roll, pitch, heading);

Serial.print(csvBuffer);

Serial.println();

lastPrint = millis(); // Update lastPrint time

Page 16 of 31

void calcAttitude(float ax, float ay, float az, float mx, floa
t my, float mz)

{

roll = atan2(ay, az);

pitch = atan2(-ax, sqrt(ay * ay + az * az));

heading;
if (my == 0)

heading = (mx < @) ? PI : 0;
else

heading = atan2(mx, my);
heading -= DECLINATION * PI / 180;

if (heading > PI) heading -= (2 * PI);
else if (heading < -PI) heading += (2 * PI);
else if (heading < @) heading += 2 * PI;

// Convert everything from radians to degrees:
heading *= 180.0 / PI;

pitch *= 180.0 / PI;

roll *= 180.0 / PI;

}

Using the MicroSD Card

The microSD card relies on the libraries packaged with the ESP32 Arduino

board files. The best way to garner knowledge is to go into the source files
and read the various header files, or to use the example sketches.

To use the examples directly, make sure you assign the CS pin to 33.

This example also shows how to setup the CD pin as input, and to us it to

detect a card. The program will halt during setup if a card is not detected, or

if the card doesn’t mount properly.

If everything’s a go, the LSM9DS1_CSV.ino example will report basic
information about the card.

Page 17 of 31

/***

*ok kK

LSM9DS1_CSV.ino

This is a modified version of the SD_Test example sketch
included with the Arduino core for the esp32, from
https://github.com/espressif/arduino-esp32

This example:

* Uses the CD pin to check for a card
* Mounts the card

* Prints information about the card.

Use this for a starting place while working with SD cards.

Hardware requirements:
ESP32 Thing attached to Motion Board

Distributed as-is; no warranty is given.
K 5K 5K ok ok 3k 3k 3 ok ok ok ok ok oK ok ok ok ok ok ok 3k 3k ok o ok ok ok ok ok oK ok ok 3k 3k sk ok o ok ok ok ok ok ok ok ok ok ok ok 3k 3k ok ok ok ok ok ok ok ok ok ok k

***/

#include "FS.h"
#include "SD.h"
#include "SPI.h"

#define SD_CS_PIN 33
#define SD_CD_PIN 38

void setup(){
Serial.begin(115200);

//Check for card presence using CD pin

pinMode(SD_CD_PIN, INPUT);

if(digitalRead(SD_CD_PIN) == 1) {
Serial.println("Card detected");

} else {
Serial.println("Card not present");
return;

}

//Call begin with (cs pin, SPI, rate (up to 1@MHz), "/sd")
if(!SD.begin(SD_CS_PIN, SPI, 1000000, "/sd")){
Serial.println("Card Mount Failed");
return;

}
uint8_t cardType = SD.cardType();

if(cardType == CARD_NONE){
Serial.println("No SD card attached");
return;

Serial.print("SD Card Type: ");

if(cardType == CARD_MMC){
Serial.println("MMC");

} else if(cardType == CARD_SD){
Serial.println("SDSC");

} else if(cardType == CARD_SDHC){
Serial.println("SDHC");

} else {
Serial.println("UNKNOWN");

uint64_t cardSize = SD.cardSize() / (1024 * 1024);

Page 18 of 31

Serial.printf("SD Card Size: %11uMB\n", cardSize);

void loop(){

To help with development in the FileSerialExample.ino example, I've written
a little SD extension library that allows writing of sequentially numbered files
up to a particular size. It behaves like a serial port, so things like .printin()
can be used.

Don't run this example! This example requires FileSerial.cpp and
FileSerial.h to operate. It is here to show how similar the file writing
operation of these two included files is to a normal serial object. Get
the full project (this example plus code and header) from

https://github.com/sparkfun/ESP32_Motion_Shield/tree/master/Software/FileSerialExample.

In addition to standard methods such as print() and println() , the
library includes the following functionality.

Construction

Create a file writing object with the class name FileSerial. You can
construct in two ways:

* FileSerial ExampleFileSet(&Serial); — Verbose output of
data/File 10 status to passed serial object.
e FileSerial ExampleFileSet; — Non-verbose.

begin();

Page 19 of 31

int begin(fs::FS * inputDevice, uint8_t ssPin, SPIClass &spi, uint32_t frequency, const char * mountpoint);

Call begin to mount the card and start the SPI device.
Pass: device, CS pin, port, frequency, and mount point.
Returns: 1 if success.

Example: ExampleFileSet.begin(&SD, 33, SPI, 10000000, "/sd")

Using Multiple FileSerial Instances: Calling .begin checks if another
FileSerial object has already mounted the card. If so, it doesn't re-
initialize the microSD card, so multiple files can be written
simultaneously. They can even have different paths.

setMaxFileSize();

void setMaxFileSize(int32_t inputSize);
Call to set the max file size in bytes.

Default: 250kB

Range:

* 0 - No cap.
+ 32 to 1000000000 — 32 bytes to 1GB

setWriteBufferSize();
void setWriteBufferSize(uint8_t inputSize);
Call to set buffer size in bytes before performing file write.

Default: 100B

Range: 1 to 255 — 1B to 255B
startLog()
int startLog(const char * inputPath, const char * inputStub);

Start a batch of log files. Pass directory name and file name. The file name
will be appended with nnnn.txt where “nnnn” are sequential numbers.

If directory is a path, parent directories must exist!

« “[existing directory]/[new directory]” is valid
* “[new directory]/[new directory]” is not

Example: ExampleFileSet.startLog("testFiles", "file");

Page 20 of 31

/***

ok ok kKoK oK oK ok ok ok ok R K

FileSerialExample.ino
Example Serial-like file writer

Marshall Taylor @ SparkFun Electronics
original creation date: Nov 6, 2017
https://github.com/sparkfun/ESP32_Motion_Shield

This example demonstrates usage of the FileSerial library.

The FileSerial libary implements the ESP32 SD_Test functions a
s a class that acts like a

HardwareSerial device. It has been modeled from the ESP32 Ard
uino core's

HardwareSerial class, but takes no input streams from the use
r.

There are a couple extra functions that aren't normally found
in a serial device

int startLog(const char * inputPath, const char * inputSt
ub);

int stopLog(void);

void setMaxFileSize(int32_t inputSize);

void setWriteBufferSize(uint8_t inputSize);

Construct with an optional serial device address, such as
FileSerial ExampleFileSet(&Serial);

Doing so logs SD read/write information plus written data to t
he passed serial port.

Resources:
ESP32 Arduino core

Development environment specifics:
Arduino 1.8.2

This code is released under the [MIT License](http://opensourc
e.org/licenses/MIT).

Please review the LICENSE.md file included with this example.
If you have any questions

or concerns with licensing, please contact techsupport@sparkfu
n.com.

Distributed as-is; no warranty is given.
3k 3k 3k 3k 3k 3k 5k >k 5k 5k 5k >k 5k 3k 5k >k 5k k 5k >k 5k >k 5k 3k 3k >k 5k 5k 3k >k %k 5k 5k >k >k 3k >k 5k 5k 3k >k %k 3k 3k >k >k 5k 3k 5k >k 5k 3k >k >k 5k %k %k >k %k k k ok

AR AR AAA KKK

#include <Arduino.h>
#include "FileSerial.h"

//Pass address of serial port to see the file IO debug informa
tion

FileSerial ExampleFileSet(&Serial);

//...or don't
//FileSerial ExampleFileSet;

int loopCount = 0;

void setup(){
Serial.begin(115200);

Page 21 of 31

delay(1000);
Serial.println("Starting Sketch");

//call begin with device, CS pin, port, frequency, and mou
nt point.

if(ExampleFileSet.begin(&SD, 33, SPI, 10000000, "/sd") ==
)

Serial.println("SD begin did not succeed, halting.");
while(1);
}
//File name will be appended with file number, ex: filennn
n.txt

//You can set max file size in bytes, set @ for unchecked.
//Default is 250kB, range 0, 32 to 1000000000
ExampleFileSet.setMaxFileSize(10000);

//You can as set buffer size between file writes.
//Default is 100B, range is 1 to 255B
ExampleFileSet.setWriteBufferSize(89);

//Start a batch of log files with startlLog,

//pass directory name and file name.

//

//If directoy is path, parent directories must exist!
//"[existing directory]/[new directory]" is valid
//"[new directory]/[new directory]" is not
ExampleFileSet.startLog("testFiles", "file");

void loop(){
while(Serial.available())
{
char ¢ = Serial.read();
ExampleFileSet.print(c);
}
ExampleFileSet.printf("Loop count: %d\n", loopCount); //Fo
rmatting works
ExampleFileSet.println(2.54321, 3); //standard formatting
works
ExampleFileSet.println(0x2E0QA, HEX); //and other types
loopCount++;
delay(100);

Using the 12C and SPI Buses

To demonstrate the attachment of additional 12C and SPI devices, a

BME280 is used. This could be any device, but the BME280 has both ports

and is pretty easy to work with. There is one catch though, the SPI bus is
shared with the microSD card and it will limit in the microSD card’s data
rate to the lowest common speed.

The two examples show are actually the same program, but with two lines

which are configured for either I12C or SPI mode.

12C

Hookup the 12C pins between the BME280 and the ESP32 Thing as shown

below.

Page 22 of 31

Connect the BME280 12C port

To connect the BME280 to the ESP32, wire up as follows:

BME280 Pin

SCL

SDA

3.3V

GND

Then, run the following example.

ESP32 Pin

22

21

3.3V

GND

Page 23 of 31

/***

ok ok kKoK oK oK ok ok ok ok R K

BME286_T2C_SPI.ino
BME280 on the ESP32 Thing

Marshall Taylor @ SparkFun Electronics

Original creation date: May 20, 2015

Modified: Nov 6, 2017
https://github.com/sparkfun/ESP32_Motion_Shield

This sketch configures a BME280 to produce comma separated val
ues for use
in generating spreadsheet graphs.

It has been modified from the original BME28@ example to demon
strate I2C and
SPI operation on the ESP32 Motion board.

Original source:
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library

Resources:
Uses Wire.h for I2C operation
Uses SPI.h for SPI operation

Development environment specifics:
Arduino IDE 1.8.2

This code is released under the [MIT License](http://opensourc
e.org/licenses/MIT).

Please review the LICENSE.md file included with this example.
If you have any questions

or concerns with licensing, please contact techsupport@sparkfu
n.com.

Distributed as-is; no warranty is given.
3k 5k 3k 3k 3k 3k 3k 3k 5k 3k >k >k %k >k %k >k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k >k 5k 3k 5k 5k 5k >k >k >k >k %k >k %k %k %k 3k >k 5k 3k 3k 5k 3k 3k 5k >k >k 5k %k > >k % % *k *k

KKK A K KA A KK]

#include <stdint.h>
#include "SparkFunBME280.h"

#include "Wire.h"
#include "SPI.h"

#define BME280_CS_PIN 17

//Global sensor object
BME280 mySensor;

unsigned int sampleNumber = @; //For counting number of CSV ro
ws

void setup()

{

//***Driver settings********************************//

// commInterface can be I2C_MODE or SPI_MODE.

//For 12C, enable the following and disable the SPI sectio
n.

//I2CAddress can be 0x77(default) or 0x76.
mySensor.settings.commInterface = I2C_MODE;
mySensor.settings.I2CAddress = 0x77;

//For SPI enable the following and dissable the I2C sectio

Page 24 of 31

//set chipSelectPin using arduino pin names.
//mySensor.settings.commInterface = SPI_MODE;

//mySensor.settings.chipSelectPin = BME280_CS_PIN;

//***Oper\ation settings*****************************//

mySensor.settings.runMode = 3; // 3, Normal mode

mySensor.settings.tStandby = @; // @, 0.5ms

mySensor.settings.filter = 0; // 0, filter off

//tempOverSample can be:
// ©, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

vely
mySensor.settings.tempOverSample = 1;
//pressOverSample can be:
// @, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

vely
mySensor.settings.pressOverSample = 1;
//humidOverSample can be:
// @, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

vely
mySensor.settings.humidOverSample = 1;

Serial.begin(115200);
Serial.print("Program Started\n");

Serial.print("Starting BME28@... result of .begin(): ox");
delay(10); //Make sure sensor had enough time to turn o

n. BME280 requires 2ms to start up.

//Calling .begin() causes the settings to be loaded

Serial.println(mySensor.begin(), HEX);

//Build a first-row of column headers
Serial.print("\n\n");
Serial.print("Sample,");
Serial.print("T(deg C),");
Serial.print("T(deg F),");
Serial.print("P(Pa),");
Serial.print("Alt(m),");
Serial.print("Alt(ft),");
Serial.print("%RH");
Serial.println("");

void loop()
{

//Print each row in the loop

//Start with temperature, as that data is needed for accur

ate compensation.

//Reading the temperature updates the compensators of the

other functions
//in the background.
Serial.print(sampleNumber);
Serial.print(",");
Serial.print(mySensor.readTempC(), 2);
Serial.print(",");
Serial.print(mySensor.readTempF(), 3);
Serial.print(",");
Serial.print(mySensor.readFloatPressure(), 0);
Serial.print(",");

Serial.print(mySensor.readFloatAltitudeMeters(),

Serial.print(",");

3);

Page 25 of 31

Serial.print(mySensor.readFloatAltitudeFeet(), 3);

Serial.print(",");

Serial.print(mySensor.readFloatHumidity(), 0);

Serial.println();
sampleNumber++;

delay(50);

SPI

SPI Data Rate: The SPI port is shared with the microSD card. The
Arduino Board for the ESP32 doesn't allow multiple data rates, so
when using the SPI port for your own peripherals, the SD data rate will
be constrained to the lowest common speed capability.

Now wire the BME280 up to the ESP32’s SPI port.

Connect the BME280 SPI port

Here are the connections in the picture.
BME280 Pin
Cs
SDI
SDO
SCK
3.3v

GND

ESP32 Pin

17

23

19

18

3.3V

GND

To start the BME280 in SPI mode, switch the configuration by
commenting/uncommenting code. Otherwise, the code is the same.

Page 26 of 31

/***

ok ok kKoK oK oK ok ok ok ok R K

BME286_T2C_SPI.ino
BME280 on the ESP32 Thing

Marshall Taylor @ SparkFun Electronics

Original creation date: May 20, 2015

Modified: Nov 6, 2017
https://github.com/sparkfun/ESP32_Motion_Shield

This sketch configures a BME280 to produce comma separated val
ues for use
in generating spreadsheet graphs.

It has been modified from the original BME28@ example to demon
strate I2C and
SPI operation on the ESP32 Motion board.

Original source:
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library

Resources:
Uses Wire.h for I2C operation
Uses SPI.h for SPI operation

Development environment specifics:
Arduino IDE 1.8.2

This code is released under the [MIT License](http://opensourc
e.org/licenses/MIT).

Please review the LICENSE.md file included with this example.
If you have any questions

or concerns with licensing, please contact techsupport@sparkfu
n.com.

Distributed as-is; no warranty is given.
3k 5k 3k 3k 3k 3k 3k 3k 5k 3k >k >k %k >k %k >k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k >k 5k 3k 5k 5k 5k >k >k >k >k %k >k %k %k %k 3k >k 5k 3k 3k 5k 3k 3k 5k >k >k 5k %k > >k % % *k *k

KKK A K KA A KK]

#include <stdint.h>
#include "SparkFunBME280.h"

#include "Wire.h"
#include "SPI.h"

#define BME280_CS_PIN 17

//Global sensor object
BME280 mySensor;

unsigned int sampleNumber = @; //For counting number of CSV ro
ws

void setup()

{

//***Driver settings********************************//

// commInterface can be I2C_MODE or SPI_MODE.

//For 12C, enable the following and disable the SPI sectio
n.

//I2CAddress can be 0x77(default) or 0x76.
//mySensor.settings.commInterface = I2C_MODE;
//mySensor.settings.I2CAddress = 0x77;

//For SPI enable the following and dissable the I2C sectio

Page 27 of 31

//set chipSelectPin using arduino pin names.
mySensor.settings.commInterface = SPI_MODE;

mySensor.settings.chipSelectPin = BME280_CS_PIN;

//***Oper\ation settings*****************************//

mySensor.settings.runMode = 3; // 3, Normal mode

mySensor.settings.tStandby = @; // @, 0.5ms

mySensor.settings.filter = 0; // 0, filter off

//tempOverSample can be:
// ©, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

vely
mySensor.settings.tempOverSample = 1;
//pressOverSample can be:
// @, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

vely
mySensor.settings.pressOverSample = 1;
//humidOverSample can be:
// @, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

vely
mySensor.settings.humidOverSample = 1;

Serial.begin(115200);
Serial.print("Program Started\n");

Serial.print("Starting BME28@... result of .begin(): ox");
delay(10); //Make sure sensor had enough time to turn o

n. BME280 requires 2ms to start up.

//Calling .begin() causes the settings to be loaded

Serial.println(mySensor.begin(), HEX);

//Build a first-row of column headers
Serial.print("\n\n");
Serial.print("Sample,");
Serial.print("T(deg C),");
Serial.print("T(deg F),");
Serial.print("P(Pa),");
Serial.print("Alt(m),");
Serial.print("Alt(ft),");
Serial.print("%RH");
Serial.println("");

void loop()
{

//Print each row in the loop

//Start with temperature, as that data is needed for accur

ate compensation.

//Reading the temperature updates the compensators of the

other functions
//in the background.
Serial.print(sampleNumber);
Serial.print(",");
Serial.print(mySensor.readTempC(), 2);
Serial.print(",");
Serial.print(mySensor.readTempF(), 3);
Serial.print(",");
Serial.print(mySensor.readFloatPressure(), 0);
Serial.print(",");

Serial.print(mySensor.readFloatAltitudeMeters(),

Serial.print(",");

3);

Page 28 of 31

Serial.print(mySensor.readFloatAltitudeFeet(), 3);
Serial.print(",");
Serial.print(mySensor.readFloatHumidity(), 0);

Serial.println();
sampleNumber++;

delay(50);

Using the GPS Port

The GPS port is just a pass-through to the serial port, so configuration is
easy. Simply start the serial port at the desired baud, usually 9600.

This example simply passes serial monitor data to the GPS port, and GPS
data to the serial monitor. Set the serial speeds when calling begin. Serial
is the USB serial port, and Seriall is the GPS port.

#include <Arduino.h>
HardwareSerial Seriall(2); // UART1/Seriall pins 16,17

void setup()

{
Serial.begin(115200);
Seriall.begin(96090);
delay(1000);
Serial.println("Weeee!");

void loop() {
//Pass usb data to the gps
if (Serial.available())
{
Seriall.write(Serial.read());
}
//Pass gps data to the usb
if (Seriall.available())
{
Serial.write(Seriall.read());
¥
}

(left) Connection to the GP-20U7. (right) Connection to the GP-735.

As for the hardware, either plug in the recommend 3-wire GPS module (rx
only), or wire in a 4-wire module (that can be run from 3.3V) to the provided
pin header.

The data that the GPS will emit comes in the form of NMEA messages. See
the NMEA Reference Manual (PDF) for information on decoding.

Page 29 of 31

Logging a Journey

Putting all the concepts from this hookup guide together, a data logger can
be built that saves IMU and GPS data. For your consideration, a simple
example exists in the software folder of the Motion Shield’s GitHub
repository.

ESP32_MOTION_SHIELD / SOFTWARE / GPS_IMU_SD_LOGGER

The program collects the GPS data as strings of NMEA data, and the IMU
data as CSV. It uses the FileSerial library to create two sets of files, one for
GPS data and one for IMU data. What to do with the data is up to you, but
let’s take a look at the GPS data and graph it.

This is what the GPS NMEA messages look like:
* Example NMEA data

The data is given to a tool such as the GPS Visualizer, which can create
various types of data. Outputting as GPX format, the data can be passed to
a map web application.

« Example GPX data

And finally, the GPS track can be viewed.

Taking a trip from Denver to SparkFun. Example data logged and mapped
with the GPS Visualizer on Google Maps.

GPS Visualizer can also produce data that can be used in Google Earth,
and has a bunch of options. If you’ve never used GPS data before, it can
be super helpful to demystify all the terminology.

Resources and Going Further

Now that you've explored all the aspects of the Motion Shield, it's time to
duct tape the Thing to your cat to see just where they really go at night. |
hope you don't really do that, but if you wanted to, these links may help you
get closer to your goal.

For more information, check out the resources below:

» Schematic (PDF) - ESP32 Thing Motion Shield’s schematic.
» Eagle Files (ZIP) - Board layout files.
« LSM9DS1 Datasheet (PDF) - Datasheet for the LSM9DS1 sensor.
» SparkFun Product Showcase: ESP32 Thing Motion Shield
» GitHub: ESP32_Motion_Shield — Product repository.
o GitHub: ESP32_Motion_Shield/Software — Software examples
(from within product repository).
* Arduino Libraries:

Page 30 of 31

o LSM9DS1 - Follow the LSM9DS1 Hookup Guide or use the

library manager.

> BME280 — Follow the BME280 Hookup Guide or use the

library manager.

» ESP32 Thing Hookup Guide — Information about the ESP32 Thing

board.

o ESP32 Thing Hookup Guide: Resources and Going Further —
Additional resources and going further with the ESP32.

Need some inspiration for your next project? Check out some of these

related tutorials:

GPS Basics

The Global Positioning System
(GPS) is an engineering marvel that
we all have access to for a relatively
low cost and no subscription fee.
With the correct hardware and
minimal effort, you can determine
your position and time almost
anywhere on the globe.

GPS Logger Shield Hookup
Guide

How to assemble and hookup the
SparkFun GPS Logger Shield.
Never lose track of your Arduino
again!

GPS Shield Hookup Guide
This tutorial shows how to get
started with the SparkFun GPS
Shield and read and parse NMEA
data with a common GPS receiver.

GPS Mouse - GP-808G
Hookup Guide

Get started with the GP-808G GPS
Mouse. This GPS module is great
for advanced projects such as
autonomous vehicles.

Page 31 of 31

https://learn.sparkfun.com/tutorials/esp32-thing-motion-shield-hookup-guide? ga=2.2166... 11/20/2017

